Search This Blog

Monday 13 June 2016

Planting sugarcane in Brazil

The Brazilian sugarcane industry employs modern agronomic management practices to enhance productivity and protect the environment. Key features of Brazil’s sustainable approach to cultivation and processing include:
Low Soil Erosion 
Brazilian sugarcane fields have relatively low levels of soil loss, due in part to the semi-perennial nature of sugarcane. The same plant will grow back many times after it is cut and its cane juice is extracted. In fact, sugarcane is typically only replanted every six or seven years.
The Brazilian industry also emphasizes farming techniques that preserve soil stability while yielding approximately 85 tons of sugarcane per hectare. Strategies include:
  • No-till production systems
  • Crop rotation with soybeans or peanuts
  • Green fertilization by planting cover crops such as Crotalaria juncea or using leftover sugarcane straw after mechanized harvesting as ground cover  
Thanks to these responsible agricultural practices, soil erosion in sugarcane fields is minimal when compared to many other crops such as rice and soybeans (For more read the “Environmental sustainability of sugarcane ethanol in Brazil” study). In some regions of the country, sugarcane has been produced on the same soil for more than 200 years with continuous yield and soil carbon increases.
Minimum Water Use
Thanks to abundant and reliable rainfall, sugarcane is usually not irrigated in South-Central Brazil, where most of the country’s crop is grown. Water accounts for more than two-thirds of sugarcane’s weight, so a significant amount of water actually comes to the mill inside the cane itself.
Brazilian mills emphasize efficiency and have reduced the water used during industrial processing by more than 70% (to 1.4 m³ per ton) during the past two decades. New technologies will soon allow for a more efficient use of the water contained in the cane, and water withdrawal could be reduced to 0.5 m3/ton. Today, nearly 95% of the water consumed by a typical mill is later treated and re-used in the industrial process, with the objective to eliminate water discharge.

No comments:

Post a Comment